Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Front Immunol ; 14: 1161571, 2023.
Article in English | MEDLINE | ID: covidwho-2318058

ABSTRACT

The magnitude and duration of immune response to COVID-19 vaccination in older adults are known to be adversely affected due to immunosenescence and inflammaging. The threat of emerging variants warrants studies on immune response in older adults to primary vaccination and booster doses so as to understand the effectiveness of vaccines in countering the threat of emerging variants. Non-human primates (NHPs) are ideal translational models, as the immunological responses in NHPs are similar to those in humans, so it enables us to understand host immune responses to the vaccine. We initially studied humoral immune responses in aged rhesus macaques employing a three-dose regimen of BBV152, an inactivated SARS-CoV-2 vaccine. Initially, the study investigated whether the third dose enhances the neutralizing antibody (Nab) titer against the homologous virus strain (B.1) and variants of concern (Beta and Delta variants) in aged rhesus macaques immunized with BBV152, adjuvanted with Algel/Algel-IMDG (imidazoquinoline). Later, we also attempted to understand cellular immunity in terms of lymphoproliferation against γ-inactivated SARS-CoV-2 B.1 and delta in naïve and vaccinated rhesus macaques after a year of the third dose. Following the three-dose regimen with 6 µg of BBV152 with Algel-IMDG, animals had increased Nab responses across all SARS-CoV-2 variants studied, which suggested the importance of booster dose for the enhanced immune response against SARS-CoV-2-circulating variants. The study also revealed the pronounced cellular immunity against B.1 and delta variants of SARS-CoV-2 in the aged rhesus macaques even after a year of vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Aged , Macaca mulatta , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing
2.
Indian J Med Res ; 2022 Oct 03.
Article in English | MEDLINE | ID: covidwho-2307545
4.
PLoS One ; 18(1): e0277867, 2023.
Article in English | MEDLINE | ID: covidwho-2197035

ABSTRACT

Real-time reverse transcription polymerase chain reaction (rRT-PCR) is one of the most accurate and extensively used laboratory procedures for diagnosing COVID-19. This molecular test has high diagnostic accuracy (sensitivity and specificity) and is considered as the gold standard for COVID-19 diagnosis. During COVID-19 surge in India, rRT-PCR service was encouraged and supported by the government of India through existing healthcare setup at various levels of healthcare facilities. The primary purpose of this research was to determine the per-unit cost of providing COVID-19 rRT-PCR services at the national reference laboratory at ICMR-National Institute of Virology in Pune during the early phase of COVID-19 pandemic mitigation, from the provider's perspective. The monthly cost for rRT-PCR testing as well as an estimated annual average unit cost for testing that takes account of peaks and troughs in pandemic were investigated. The time frame used to estimate unit cost was one year (July 2020-June 2021). For data collection on all resources spent during the early phase of pandemic, a conventional activity-based bottom-up costing technique was used. Capital costs were discounted and annualized over the estimated life of the item. Apportioning statistics were selected for cost heads like human resources, capital, and equipment based on time allocation, sharing of services, and utilization data. The data was also used to understand the breakdown of costs across inputs and over time and different levels of testing activity. During the initial phase of pandemic mitigation, the per unit cost of providing the COVID-19 rRT-PCR test was estimated to be ₹566 ($7.5) in the month of July 2020, where the total 56318 COVID-19 rRT-PCR tests was performed. The major proportion (87%) of funds was utilized for procuring laboratory consumables, followed by HR (10%), and it was least for stationary & allied items (0.02%). Unit cost was found to be the most sensitive to price variations in lab consumables (21.7%), followed by the number of samples tested (3.9%), salaries paid to HR (2.6%), price of equipment (0.23%), and building rental price (0.14%) in a univariate sensitivity analysis. The unit cost varies over the period of the pandemic in proportion with the prices of consumables and inversely proportional with number of tests performed. Our study would help the Government to understand the value for money they invested for laboratory diagnosis of COVID-19, budget allocation, integration and decentralization of laboratory services so as to help for achieving universal health coverage.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Pandemics , COVID-19 Testing , Reverse Transcriptase Polymerase Chain Reaction , India/epidemiology
5.
Indian J Med Res ; 155(1): 136-147, 2022 01.
Article in English | MEDLINE | ID: covidwho-2201741

ABSTRACT

Background & objectives: The COVID-19 disease profile in Indian patients has been found to be different from the Western world. Changes in lymphocyte compartment have been correlated with disease course, illness severity and clinical outcome. This study was aimed to assess the peripheral lymphocyte phenotype and subset distribution in patients with COVID-19 disease from India with differential clinical manifestations. Methods: Percentages of peripheral lymphocyte subsets were measured by flow cytometry in hospitalized asymptomatic (n=53), mild symptomatic (n=36), moderate and severe (n=30) patients with SARS-CoV-2 infection, recovered individuals (n=40) and uninfected controls (n=56) from Pune, Maharashtra, India. Results: Percentages of CD4+Th cells were significantly high in asymptomatic, mild symptomatic, moderate and severe patients and recovered individuals compared to controls. Percentages of Th memory (CD3+CD4+CD45RO+), Tc memory (CD3+CD8+CD45RO+) and B memory (CD19+CD27+) cells were significantly higher in the recovered group compared to both asymptomatic, mild symptomatic patient and uninfected control groups. NK cell (CD56+CD3-) percentages were comparable among moderate +severe patient and uninfected control groups. Interpretation & conclusions: The observed lower CD4+Th cells in moderate+severe group requiring oxygen support compared to asymptomatic+mild symptomatic group not requiring oxygen support could be indicative of poor prognosis. Higher Th memory, Tc memory and B memory cells in the recovered group compared to mild symptomatic patient groups might be markers of recovery from mild infection; however, it remains to be established if the persistence of any of these cells could be considered as a correlate of protection.


Subject(s)
COVID-19 , Humans , India/epidemiology , Lymphocyte Count , Lymphocyte Subsets , Oxygen , SARS-CoV-2
6.
J Med Virol ; 95(2): e28484, 2023 02.
Article in English | MEDLINE | ID: covidwho-2173238

ABSTRACT

The apprehension of needles related to injection site pain, risk of transmitting bloodborne pathogens, and effective mass immunization have led to the development of a needle-free injection system (NFIS). Here, we evaluated the efficacy of the NFIS and needle injection system (NIS) for the delivery and immunogenicity of DNA vaccine candidate ZyCoV-D in rhesus macaques against SARS-CoV-2 infection. Briefly, 20 rhesus macaques were divided into 5 groups (4 animals each), that is, I (1 mg dose by NIS), II (2 mg dose by NIS), III (1 mg dose by NFIS), IV (2 mg dose by NFIS) and V (phosphate-buffer saline [PBS]). The macaques were immunized with the vaccine candidates/PBS intradermally on Days 0, 28, and 56. Subsequently, the animals were challenged with live SARS-CoV-2 after 15 weeks of the first immunization. Blood, nasal swab, throat swab, and bronchoalveolar lavage fluid specimens were collected on 0, 1, 3, 5, and 7 days post infection from each animal to determine immune response and viral clearance. Among all the five groups, 2 mg dose by NFIS elicited significant titers of IgG and neutralizing antibody after immunization with enhancement in their titers postvirus challenge. Besides this, it also induced increased lymphocyte proliferation and cytokine response. The minimal viral load post-SARS-CoV-2 challenge and significant immune response in the immunized animals demonstrated the efficiency of NFIS in delivering 2 mg ZyCoV-D vaccine candidate.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Animals , SARS-CoV-2 , Macaca mulatta , Antibodies, Neutralizing , Antibodies, Viral , Immunogenicity, Vaccine
7.
Hum Vaccin Immunother ; 18(7): 2156753, 2022 12 30.
Article in English | MEDLINE | ID: covidwho-2166142

ABSTRACT

We have evaluated the immunogenicity of two dose of Covaxin given at a one-month interval to two adult populations, i.e. COVID-19 naïve-vaccinated individuals (n = 118) and COVID-19 recovered individuals (n = 128) with the vaccination. The immune response in the study population were assessed at three follow-ups, namely at one month post first dose, one and six months after the second dose. The persistence of S1RBD IgG and neutralizing antibodies for six months post vaccination was observed at different time intervals. The enhanced immune response was observed in both the participant groups. The study emphasizes the need for a booster dose post six months of vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Immunogenicity, Vaccine
8.
iScience ; 25(10): 105178, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2041842

ABSTRACT

The immunity acquired after natural infection or vaccinations against SARS-CoV-2 tend to wane with time. Here, we compared the protective efficacy of COVAXIN® following two- and three-dose immunizations against the Delta variant and also studied the efficacy of COVAXIN® against Omicron variants in a Syrian hamster model. Despite the comparable neutralizing antibody response against the homologous vaccine strain in both the two-dose and three-dose immunized groups, considerable reduction in the lung disease severity was observed in the 3 dose immunized group after Delta variant challenge. In the challenge study using the Omicron variants, i.e., BA.1.1 and BA.2, lesser virus shedding, lung viral load and lung disease severity were observed in the immunized groups. The present study shows that administration of COVAXIN® booster dose will enhance the vaccine effectiveness against the Delta variant infection and give protection against the BA.1.1 and BA.2 variants.

10.
Indian J Med Res ; 155(5&6): 565-569, 2022.
Article in English | MEDLINE | ID: covidwho-2040107

ABSTRACT

Background & objectives: The pandemic caused by the SARS-CoV-2 has been a threat to humankind due to the rapid spread of infection and appearance of multiple new variants. In the present study, we report the dynamics and persistence of immunoglobulin G (IgG) and immunoglobulin M (IgM) antibodies in asymptomatic and symptomatic COVID-19 patients by chemiluminescent assay. Methods: A total of 463 serum samples from 218 SARS-CoV-2 PCR-positive patients were collected over a period of 124 days post-onset of disease (POD). Antibody levels were measured by chemiluminescence bioanalyzer. Neutralizing antibody titres were assessed by plaque reduction neutralization test (PRNT) for SARS-CoV-2. Results: Both IgM and IgG started appearing from day five post-infection in symptomatic and asymptomatic patients. IgM antibody response peaked around day 35 POD and rapidly diminished thereafter, with the last IgM-positive sample observed at 90 days POD. IgG antibody response peaked around 45 days POD and persisted till 124 days. The chemiluminescence immunoassay (CLIA) results showed a moderate correlation (R=0.5846, P<0.001) compared with PRNT. Additional analysis indicated a neutralizing titre of 250 corresponded to 12.948 AU/ml of YHLO iFlash SARS-CoV-2 IgG units. Interpretation & conclusions: Both symptomatic and asymptomatic COVID-19 patients seem to initiate production of antibody responses from day five of onset of disease. Although the CLIA gives high sensitivity and specificity and also its binding IgG antibody titres may correlate moderately with protective immunity, our results indicate that the values of binding antibody alone may not be a perfect guide to represent virus neutralization titre during donor selection for plasma therapy. However, IgM and IgG antibody detection may help in monitoring the status of disease progression and burden in the community.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Antibodies, Viral , Immunoglobulin M , Immunoglobulin G , Sensitivity and Specificity
13.
Emerg Infect Dis ; 28(6): 1269-1273, 2022 06.
Article in English | MEDLINE | ID: covidwho-1933531

ABSTRACT

A 11-year-old boy with acute myeloid leukemia was brought for treatment of severe acute respiratory infection in the National Capital Region, New Delhi, India. Avian influenza A(H5N1) infection was laboratory confirmed. Complete genome analysis indicated hemagglutinin gene clade 2.3.2.1a. We found the strain to be susceptible to amantadine and neuraminidase inhibitors.


Subject(s)
Influenza A Virus, H5N1 Subtype , Influenza in Birds , Influenza, Human , Animals , Antiviral Agents/pharmacology , Birds , Child , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , India , Influenza A Virus, H5N1 Subtype/genetics , Influenza, Human/diagnosis , Influenza, Human/drug therapy , Male , Phylogeny
14.
Sci Rep ; 12(1): 12038, 2022 07 14.
Article in English | MEDLINE | ID: covidwho-1931492

ABSTRACT

This is a comprehensive report on immunogenicity of COVAXIN® booster dose against ancestral and Variants of Concern (VOCs) up to 12 months. It is well known that neutralizing antibodies induced by COVID-19 vaccines wane within 6 months of vaccination leading to questions on the effectiveness of two-dose vaccination against breakthrough infections. Therefore, we assessed the persistence of immunogenicity up to 6 months after a two or three-dose with BBV152 and the safety of a booster dose in an ongoing phase 2, double-blind, randomized controlled trial (ClinicalTrials.gov: NCT04471519). We report persistence of humoral and cell mediated immunity up to 12 months of vaccination, despite decline in the magnitude of antibody titers. Administration of a third dose of BBV152 increased neutralization titers against both homologous (D614G) and heterologous strains (Alpha, Beta, Delta, Delta Plus and Omicron) with a slight increase in B cell memory responses. Thus, seronversion rate remain high in boosted recipients compared to non-booster, even after 6 months, post third dose against variants. No serious adverse events observed, except pain at the injection site, itching and redness. Hence, these results indicate that a booster dose of BBV152 is safe and necessary to ensure persistent immunity to minimize breakthrough infections of COVID-19, due to newly emerging variants.Trial registration: Registered with the Clinical Trials Registry (India) No. CTRI/2021/04/032942, dated 19/04/2021 and on Clinicaltrials.gov: NCT04471519.


Subject(s)
COVID-19 Vaccines , COVID-19 , Immunogenicity, Vaccine , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary , SARS-CoV-2 , Vaccination , Vaccines, Inactivated
15.
Indian J Med Res ; 155(1): 129-135, 2022 01.
Article in English | MEDLINE | ID: covidwho-1924409

ABSTRACT

Background & objectives: Polio, measles, rubella, influenza and rotavirus surveillance programmes are of great public health importance globally. Virus isolation using cell culture is an integral part of such programmes. Possibility of unintended isolation of SARS-CoV-2 from clinical specimens processed in biosafety level-2 (BSL-2) laboratories during the above-mentioned surveillance programmes, cannot be ruled out. The present study was conducted to assess the susceptibility of different cell lines to SARS-CoV-2 used in these programmes. Methods: Replication of SARS-CoV-2 was studied in RD and L20B, Vero/hSLAM, MA-104 and Madin-Darby Canine Kidney (MDCK) cell lines, used for the isolation of polio, measles, rubella, rotavirus and influenza viruses, respectively. SARS-CoV-2 at 0.01 multiplicity of infection was inoculated and the viral growth was assessed by observation of cytopathic effects followed by real-time reverse transcription-polymerase chain reaction (qRT-PCR). Vero CCL-81 cell line was used as a positive control. Results: SARS-CoV-2 replicated in Vero/hSLAM, and MA-104 cells, whereas it did not replicate in L20B, RD and MDCK cells. Vero/hSLAM, and Vero CCL-81 showed rounding, degeneration and detachment of cells; MA-104 cells also showed syncytia formation. In qRT-PCR, Vero/hSLAM and MA-104 showed 106 and Vero CCL-81 showed 107 viral RNA copies per µl. The 50 per cent tissue culture infectious dose titres of Vero/hSLAM, MA-104 and Vero CCL-81 were 105.54, 105.29 and 106.45/ml, respectively. Interpretation & conclusions: Replication of SARS-CoV-2 in Vero/hSLAM and MA-104 underscores the possibility of its unintended isolation during surveillance procedures aiming to isolate measles, rubella and rotavirus. This could result in accidental exposure to high titres of SARS-CoV-2, which can result in laboratory acquired infections and community risk, highlighting the need for revisiting biosafety measures in public health laboratories.


Subject(s)
COVID-19 , Measles , Poliomyelitis , Rubella , Animals , Cell Line , Chlorocebus aethiops , Containment of Biohazards , Dogs , Public Health Surveillance , SARS-CoV-2 , Vero Cells
16.
Comput Biol Med ; 147: 105788, 2022 08.
Article in English | MEDLINE | ID: covidwho-1914269

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the worldwide spread of coronavirus disease 19 (COVID-19), and till now, it has caused death to more than 6.2 million people. Although various vaccines and drug candidates are being tested globally with limited to moderate success, a comprehensive therapeutic cure is yet to be achieved. In this study, we applied computational drug repurposing methods complemented with the analyses of the already existing gene expression data to find better therapeutics in treatment and recovery. Primarily, we identified the most crucial proteins of SARS-CoV-2 and host human cells responsible for viral infection and host response. An in-silico screening of the existing drugs was performed against the crucial proteins for SARS-CoV-2 infection, and a few existing drugs were shortlisted. Further, we analyzed the gene expression data of SARS-CoV-2 in human lung epithelial cells and investigated the molecules that can reverse the cellular mRNA expression profiles in the diseased state. LINCS L1000 and Comparative Toxicogenomics Database (CTD) were utilized to obtain two sets of compounds that can be used to counter SARS-CoV-2 infection from the gene expression perspective. Indomethacin, a nonsteroidal anti-inflammatory drug (NSAID), and Vitamin-A were found in two sets of compounds, and in the in-silico screening of existing drugs to treat SARS-CoV-2. Our in-silico findings on Indomethacin were further successfully validated by in-vitro testing in Vero CCL-81 cells with an IC50 of 12 µM. Along with these findings, we briefly discuss the possible roles of Indomethacin and Vitamin-A to counter the SARS-CoV-2 infection in humans.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Indomethacin/pharmacology , Vitamins
SELECTION OF CITATIONS
SEARCH DETAIL